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The variational problem is solveQof constructing the. contour of the supersonic 

part of an optimal compound nozzle intended to work in two essentially different 

regimes. Thus the complete nozzle works in a regime that is characterized by 

large overexpansion of pressure. In a regime with smaller overexpansion the final 
section of the nozzle is retracted (or jettisoned). There are given the maximum 

permissible length of the full nozzle, the back pressure determining each regime, 

and the probabilities of using the full nozzle and the partial one. Optimization 
is carried out for the average thrust. 

Necessary conditions are obtained that permit constructing an optimal contour, 
and a corresponding numerical algorithm is developed based on these conditions. 

Examples are given of optimal compound nozzles constructed with the use of this 
algorithm, and comparison is made with the optimal continuous nozzles calcul- 

ated for the average back pressure. An analysis is made of the evolution of the 

shape of the optimum compound nozzle in the whole range of possible values of 
the maximum allowable length. 

The question of the possibility of applying a compound nozzle was considered 
in [l, 21, The profiling of such a nozzle cannot be carried out according to exist- 

ing solutions p-51. and obtaining the necessary exlremal conditions requires the 
application of the general method of Lagrange multipliers. In the solution of 
variational problems in gas dynamics this method was first applied by Guderky 
and Armitage [6, 71 and independently, though somewhat later, by Sirazetdinov 

C81. 

1, We consider a plane (v =-J 0) or axisymmetric (v = 1) nozzle (Fig.l), of which 
the final sectiondb can be separated from the initial section curl. We will call such a 

nozzle compound. Let the gas flow from left to right, 
and the axes of a rectangular coordinate system zy, 

which in the axisymmetric case lies in the meridional 

flow plane, be placed so that the initial point n of the 

nozzle contour to be found lies on they-axis. The 
contour to the left of n is regarded as given, where in 

the general case point a is a comer (the direction of 
the contour sought to the right of (I does not neces- 
sarily agree with the direction of the contour given to 
the left of a). We restrict ourselves to the case when 

13 Y 
shock waves are absent from the part of the region of 
influence of the desired contour lying to the left of the 

Fig. 1 characteristic !~b, 
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We assume that the gas is inviscid and non-heat-conducting, and its entropy and 
stagnation enthalpy at X = 0 are given and constant across the section. Under these 
assumptions these quantities remain constant everywhere to the left of hb. Therefore the 
pressure p, density p, speed of sound c and other thermodynamic variables are functions 

of the speed w, and to determine the flow variables it suffices to use the equations of 
irrotationality and continuity 

L au au 
z-v-= 

l - ily dz (1.1) 
where IL and v are the projections of the velocity vector onto the x- and y-axes. 

If the magnitude of the comer angle at poi 4 t a exceeds a certain value, which is 

determined by the shape of the contour for X < 0, the flow in the transonic region does 
not depend on the shape of the contour for X > 0 nor, in particular, on the angle 0, of 
inclination of the contour of the wall to the x-axis to the right of a. In this case the 

magnitude of 6, affects only the extent of the expansion fan springing from a, that is, 

the location of the characteristic ah of the second family, which bounds this fan on the 
right. Therefore the variables on some “inner” characteristic of the fan, for example on 
ac, can be regarded as given. In this connection the flow in region G, bounded by the 

characteristics ac and cb and the contour adb, is determined (for a given characteristic 

oc and flow variables on it) by equations (1.1) and the condition of no flow 

Ls$‘---u/v=0 (1.2) 

through the wall of the nozzle. In (1.2) and henceforth a prime indicates the total deri- 
vative with respect to y along the contour adb, and x = E (y) is the equation of this 

contour. 
Together with the sections ad and db , the nozzle has the afterbody portions, whose 

contours h/c/ and &f are not exposed to the gas flow and are shown by dashed lines 

in Fig. 1. The pressures p+ and p+” that act on bkf and dsf , respectively, are given 
constants, characterizing the working regime of the full nozzle and the partial one. In 

the general case point d, like point a,. can be a comer point. Such a situation is shown 

in Fig. 1, where de and dg are characteristics of the second family bounding the corre- 

sponding expansion fan. 

By virtue of theassumptionsmade, the thrusts x and X0 of the complete and tie truncated 
nozzles are, to within an additional positive factor that is not essential for what follows, 

equal to b d 

x = 
s 

Pt 
m+/ - yi+' 1-t-v 9 f' =i pyvdyayr' p+o 

i+v 
(1.3) 

82 cl 
Here and subsequently the subscripts b, d,... indicate variables at the corresponding 

points. 
We formulate the variational problem. let there be given the maximum allowable 

length X of the complete nozzle, the pressures p+ and p'", the positive numbers n and 

no, the enthalpy and entropy of the gas at enny into the nozzle, and the shape of its 
subsonic part (as mentioned above, in this case the flow can be regarded as given to the 
left of the characteristic UC). It is required to construct a contour adb,, that is, to find 

the relationship X = $, (y), h w ere 0 < 6 (y) < X, and the coordinates of points’ d 
and b,such that the compound nozzle realizes the maximum “average” thrust 

Xc = nx + n”f (1.4) 
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The coefficients n and no in (1.4). which are determined by the purposes of the nozzle, 

are the probabilities of using the complete nozzle and the partial one ; and it is conve- 
nient to normalize so that ?a + no’ = 1. Then (1.4) together with (1.3) gives 

For n = i we have no = 0, and thus only the complete nozzle is used (Xc - X). For 
n < i the contributions of the initial and final portions of the contour to the functional 

(1.5) are different. This also serves to explain why in the general case the optimal con- 

tour has a comer at point d. As one more condition on the problem we may require that 
the length of the truncated nozzle be determined by the abscissa of point d, that is, that 

the condition t < zd be satisfied on rd. 

It is convenient to regard the variables in (l.l)-(1.5) as dimensionless. In reducing 

to dimensionless form it is convenient to take as the characteristic length, speed, and 

density (r,, UI*) ,P* ) the ordinate of point,a and the critical speed and density of the 
flow. Nondimensionalization is achieved by referrlng quantities of dimension length to 
1 *Y speed to we, density psr pressure pry*’ and thrust to p&~,aZy. In the plane case 

X1 X”, and XC in (J.3)-(1.5) are quantities per unit width of the nozzle (in the direction 
perpendicular to the zy -plane). 

2, To solve the formulated variational problem, we construct the auxiliary functional 
h 

J = xx + s aW + si h& + p2L,) dx dy 
0 G 

where a = a ( y) and pi = pi (5, y) are variable Lagrange multipliers. By virtue of 
Eqs. (1.1) and (1.2). for an admissible variation, when the velocity components u and u 

and also the density and pressure, being known functions of u and v, satisfy the equations 
and boundary conditions of the problem, the first variation 6J coincides with the first 
variation 6xc of the initial functional. 

In finding‘ 8J it must be kept in mind that for small variations of the contour arlb 

the gas variables change only in the subregion Go of the region G that lies to the right 

of ah, and also a displacement of this characteristic occurs. The variations of variables 

to the left of oh are equal to zero. Considering this, and using the equations of motion 
(1. l), it is possible to show that although the variations 6u and bu are different from 

zero on ah (by virtue of the displacement of oh due to change in the angle of discon- 

tinuity at point a), their combinations appearing in 6J for the variation of the integral 
over G vanish on oh. The calculation of the contribution to bi associated with varia- 

tion of the coordinates of point & is carried out just as in [9$ Also, discontinuities in 

the factors p1 and p, are admitted, which can occur only on characteristics [9. lo]. 

After the calculation of 6 J the coefficients in front of all the variations, which are 
different from the variatlons of the coordinates of the contour adb, can be set equal 

to zero by choice of the Lagrange multipliers a, pL1 and ps. As a result is obtained 
the “associated” problem for the determination of CL on ndb and the multipliers I,, and 
11, in region G”. Thus in the subregion of their continuity, }:1 and 11~ must satisfy the 
following system of partial differential equations 
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(2.2) 

This system has for w > c two families of real characteristics, which coincide with 
the characteristics of the equations of motion (1.1) and on which 

dpr T,Y”PP +a = 0 (P=I/Ms--1) (2.3) 

Here and subsequently the upper (lower) sign corresponds to characteristics of the first 

(second) family, and M = w / c is the Mach number. The differentials dpl and dpt 
in (2.3) are taken along the characteristics. 

On characteristics that lie in&” and are lines of discontinuity of the Lagrange multi- 
pliers, the jumps in j.rl and ps satisfy the relation 

II%1 z!z Y’PP II41 = 0 (2.4) 

where [pi1 is the difference in the values of pi to the right and the left of the discon- 

tinuity. 

The boundary conditions associated with the problem for i&i are formulated on the 
nozzle wall and on the final characteristichb , and have the form 

pr = y”pv cm ad, pl = y’pvn on xdb, p1 + ~wl~a = 0 m hb (2.5) 

Finally, the Lagrange multiplier uon ad and db is determined so that 

a + Y’PVP~ = 0 (2.6) 

Use of the third condition from (2.5) permits integration of the equation from (2.3) 

corresponding to characteristics of the first family, and thus finding p1 and p2 on hb in 
terms of y and the flow parameters. The appropriate equations have the form 

p.1 = C (y’pP)“% p2 = - C (Yv($)-‘/s on hb (2.7) 

Here C is a constant that is determined, for example, by comparing the values of ~l,f, 
obtained from (2.5) and (2.7). 

For an arbitrary contour adb,,for which the flow takes place without formation of a 
shock wave in Go, the equations and boundary conditions (2.2)-(2.7) permit solution 
of the associated problem and finding, in particular, the values of the Lagrange multi- 
pliers on the contour adb. Here it can be shown that in the case illustrated in Fig.1 the 

line of discontinuity of the multipliers ~1 and ps is the characteristic &’ of the first 
family passing through point d. After the choice of the Lagrange multipliers the expres- 
sion for 6xX = 6J takes the form 

6Xc = AAYd + BAG - nyby (p’ - p + $- UU)b A&, + 

+ \ PRY’ (p2 - n4’@ dy 
h 

(2.8) 
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d+ 

A = !/d'(P_ - nP+ - nOpfo)d - [&y’f’Uld -’ s {p,dv - payvd (PU)} 
d- 

d+ 

B = ~~aY'~v~d - s {I@U + pad (PV)) 
d- 

Here the integrals at point d are taken through the whole fan of the expansion wave ; 
the subscripts “minus” (“plus”) are associated with parameters on the wall before (after)- 
the point of discontinuity ; [q~] = cp+ - cp_; and St designates the variation of the 

abscissa of the wall (for fixed y), and AX and Ay the increments in the coordinates 

of the corresponding point. 
If the contour adb is optimal, then for an admissible variation the variation 8%~ is 

nonpositive. For zd( tb this, and consideration of limitations on the length of the 

complete nozzle, lead to the following conditions for determining the shape of the opti- 

mal contour : 
(Pz - u)’ = 0 on ad, (pz - nu)’ = 0 on db 

A 0, B=O at point d 

c/7+=- p + puvfr’), = 0, 

(2.9) 

.(yvpv%zP-‘)~ > 0 

Here the third and fourth, and the-fifth and sixth conditions, respectively, determine the 
ordinate and abscissa of points d and b, where fulfillment of the inequality in the latter 

conditions indicates that the length of the whole nozzle is equal to the maximum per- 

missible. 
In the specified range of the parameters X, n, pf. and p+O, in particular if Pto z P+ 

the optimal is not a compound but a simple nozzle when xd ES zb. It can be shown that 
in such a case the ordinate of the end point is determined by the next to the last equation 
(2.9) with p+ replaced by the mean counter-pressure PC’ = np+ + n’p+O. The con- 

dition that the maximum Xn be achieved by a continuous nozzle has the form 

{(~7’“~-‘)- - n (paag-‘)+}b > 0 (2.10) 

In the case when thisinequality is satisfied, introduction of an infinitely small remov- 
able end part leads to reduction in the thrust of the nozzle. The slope 5, of that end 

part, where r = v / u, is chosen optimal, that is, such that the parameters (with sub- 
script “plus”) that are obtained on the wall after turning from 5 = c_ E cb to 

5 = 5, satisfy the next to the last condition (2.9). Since p+ < PC+, then L > c_. 
The “minus” subscript in (2.10) is assigned to parameters on the wall of a continuous 
nozzle. The condition (2.10) can be obtained by direct variation of the final element 
of the nozzle, as well as from (2.8). Here it is necessary to consider the connection 
between the admissible increases in the coordinates of points b and d for xd = zb and 
the fact that here AXd < 0. 

The process of constructing an optimal nozzle can be simplified in the following 
way. If the segments ad and db are optimal, then according to (2.5) and (2.9) 

CL1 = YvPv9 
(2.11) 

/Ja = U + Cl on ad, pl = YWn, pa = nu + Ca on db 

where Ctand C, are constants. Construction of the segments ad and db of the optimal 
contour by virtue of the solution of the corresponding Goursat problem is equivalent to 
determining the “optimal” characteristics Id and bg. The change to those characteristics 
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is realized thanks to the fact, that just as in [ll], the first pair of equations (2.11) gives 

the solution of the Cauchy problem for the system (2.2) with initial conditions (2.11) 

on ad in the whole triangle adl. In an analogous way the second pair of equations in 

(2.11) gives the solution of the corresponding Cauchy problem in dbg. As a result it is 
necessary to determine the Lagrange multipliers in the solution of the associated prob- 

lem only in the quadrangle Zdgh. Here the boundary conditions for ~1 and pZ are 

imposed on dg and gh. 
The optimal characteristic Zct? is determined by the equation 

E E p1 / yv pfJ + p2 - u - up-l - C, = 0 on Id (2.12) 

which replaces the first of the conditions in (2.9) on ad. The Lagrange multipliers 

appearing in (2.12) are taken on the right side of the characteristic Id. In an analog- 

ous way the condition determining the optimal characteristic 6g has t6e form 

v + B (u + C,) =‘ 0 on bg (2.13) 

The values of cc1 and pZ on dg,required for solving the associated problem in Zdgh 
are given by the equations 

Pl = yvpvn, p2 = nu + C, on dg (2.14) 

These equations, when written at point g, together with (2.7) permit the constants C and 

C, to be expressed in terms of n and the flow parameters at that point. 

-We note that condition (2.13) on bg reduces to the known condition of optimality 
that is obtained on the closing characteristic in problems of optimization of a continu- 
ous nozzle 13, 45 The given result is natural since the closing section works only in one 

regime, and by virtue of the supersonic character of the flow changing its shape does not 

affect the initial section ad. 
The equations and boundary conditions obtained above form the basis of a numerical 

algorithm for constructing the sections ad and de of the opt&al nozzle in gas flow and, 

in particular, for determining the coordinates of points b and d. Here the outline of the 

afterbody section is merely required to join the initial point f with points b and d , and 

the length of the afterbody section must not exceed X for the entire nozzle and Zd for 

its section. Therefore, although the shape of the contour of the afterbody sections is 
arbitrary in a given case, they may contain butt ends bk and ds, where I E X and t E Zd 

respectively [12]. The forces acting on the afterbody sections do not depend on their 
configuration. Such a statement holds only in the absence of external flow. If in the 
regime of operation of the entire nozzle the afterbody section is in a supersonic stream, 
then its construction and the determination of the coordinates of point b are carried out 

as in fl33. 

3, In the variational problem under consideration x, r1, p+ and 11~’ are given. The 
numerical algorithm for constructing the optimal contour tums out to be more simple 
for the .“inverse problem”. For that, instead of the indicated values, the following ones 
are given: the comer angle of the contour at the initial point (consequently the closing 

characteristic of the expansion fan springing from point a), the coordinates tl and x,, 

which determine the location of points d and h on the cldsing characteristic of the first 
fan, and the corner angle of the contour at point d. Here, as was mentioned above, con- 
struction of the initial section of a compound nozzle is equivalent to the construction 
of the optimal characteristic Id, that is the determination on it, for example. of the 
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relationship 5 = 5 ($). The stream function 9 is introduced as usual such that on the 

axis tj = 0 andonthewall21) = 1. 
The optimal distribution 5 (9) on Zd must satisfy the condition (2.12). in which & 

and us are found from the solution of a Goursat problem in Zdgh with boundary conditions 
(2.14) on dgand (2.7) on.hg.Satisfying the condition (2.i2) at point Z provides the choice 
of the constant c,. A different distribution of c, from the optimal means a violation 

of condition (2.12). that is, the equality E = 0 holds at a point on the characteristic 
Zd different from I.-This propeT is used to organize an Iteration process for the deter- 
mination of the optiinal distribution of 5 on Zd. The iteration was carried out accord- 

ing to the scheme c!, = c;’ + e$?%j, (3.1) 
which is analogous to the scheme employed in 114, 157. In (3.1) the subscript gives the 

number of the point on Zd and the superscript the number of iterarion, and the z,f are 

constants, where 1 a,,jI < 1. The quantities z,,j in these bounds can depend on the num- 

ber of the point and the number of iteration. Since a given point Z the value $1 is 

known, and $d 7 1, it Is convenient to arrange the points on Id so that fixed subscripts 

in (3.1) correspond to fixed ,?JL 
In each iteration the relation 5 (4) found from (3,l) together with the equations of 

the characteristic of the first family completely determines the characteristic Id. Then 

from the solution of the Goursat problem for the equations of flow in the quadrangle 
Zdeh’ with known parameters on Id and lh and the subsequent calculation of the expan- 

sion fan edg , the flow is found in the whole quadrangle Zdgh. This in its turn permits 
solution of the Goursat problem for &and ps and making a new iteration according to 

(3.1). When the condition E, = 0 is satisfied with given accuracy at all points of the 
characteristic Zd, the optimal characteristic bg is constructed. For this. integration of 
the equations ofthe characteristic of the first family is carried out from ;$Y = $a to 

II ‘l , with Eq. (2.13) taken into account. 
ITcase the optimal turns out to be a nozzle of the kind considered (Fig, 1). vb > 0 

and in the last condition of (2.9) the inequality holds, that is x = zb. The pressurep+ 
characterizing the working regime of the complete nozzle is, in Lne given “inverse” 

approach, found (afms determination of the parameters at point s) from the next to the 
last condition of (2.9). Finally, n and pi” are selected so as to satisfy the third and 

fourth conditions of (2.9). The latter, with regard to the expressions for A and B and 

the solutions (2.11). have the form 

&Y’ = I’_ - np, - n’p+* - (nu+ + C,) (pu), + i 

+ (u- + C,) (PU)-] 
d 

- ds’(~&dv - pad (pu)) = 0 
d- 

BY:’ = ““d”; + &) b”)+- (u- + cl) (pu)_}d - 

d s bw-‘d~ + psd (~9) = 0 
d- 

(3.2) 

If the a, pi, p+O, p,,- and pd_ found as the result of solution of the “inverse” 
problem satisfy the inequalities 

O<n,(l, O<p+&p,-9 o&p+“<Pd- 
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then the values obtained for X, n, P+ and p’” can be regarded as the data for some 
original variational problem. We note that the construction of a continuous optimum 

nozzle is also based on the solution of an inverse problem. 

In the reasoning given above the fact was ignored that in Eqs. (2.14) for p1 and ps on 
dg there appears IL, which is known only after construction of the characteristic Id. 
This discrepancy is, for n > 0 , eliminated by setting 

The equations and boundary conditions for pi0 in the quadrangle ldgh are obtained 

from (2.2), (2.3),(2.7) and (2.14) by replacing pi, c and C,. by pi”, c” and csor 
and n by unity. At the same time pI and C, in (2.12) and (3.2) must be replaced by 

npi” and nC,“_ This permits elimination of n from the equations and boundary conditions 
of the associated problem; Here n and C, in each iteration are found from the second 
equation of (3.2). which is linear with respect to n and C, , and from the equation 

El= 0. 

The speed of convergence of the iteration process (3.1) depends on the choice of the 
initial distribution of 5 on Id. For a small final section db it is natural to take the 
distribution corresponding to the optimal for the continuous nozzle [3, 41. Then each 

new construction of an optimal distribution of 5 on Id is taken as the initial for con- 
structing a nozzle with a longer final section, a larger comer angle in the wall, etc. 

The iteration of 5 on ld is carried out as long as ( E, / c,I everywhere on dd becomes 
less than some sufficiently small value. Using the expression for 6Xn, we can show that 

the error AXE in the thrust of a nozzle constructed in this way is a quantity of order 

E $a,, where Emmax is the maximum disparity on Zd. 

4, The algorithm given above was applied to the construction of a large number of 

optimal contours. Axisymmetric nozzles were considered with a plane transition surface, 

departures from which were treated according to [ 161. The gas was assumed perfect with 

adiabatic exponent x =- 1.4. Iterations werecarried out until the condition 1 E,&,, ( < 
< 0.01 was satisfied at every point of lu ; in all cases considered, from two to seven 

iterations were required. 
The optimal distributions of 5 on Id for some nozzles that are obtained for &, = 0.221, 

A&r G k, -cd:. = 0.15 and a fixed point I are shown in Fig. 2. Curves l-6 correspond 
to nozzles that are optimal for the following values of X, n, p+ and p+” and have the 

geometric properties shown in Table 1 

Table 1 

1 2 3 4 5 6 

s = 2.91 3.57 4.34 
,1 = 0.:15 0.37 0.39 
p+ x102 ZZ 0.48 0.67 0.72 
P +O x10 =1.16 2.10 i . (I.3 
!tb = 1 .ti2 1.70 1.99 
*,1 = 2.42 2.44 2.46 
?Jn = 1.49 1.51 1.52 
j,,_ x 10 = 1 .34 1.41 1.48 
cc, x 10 == 2.52 2.24 1.09 

. 5 .“,, 3r 6.29 7.51 
0.42 0.45 0.49 
0.69 0.50 0.44 
0.95 0.86 0.75 
2.20 2.45 2.74 
2.48 2.M 2.55 
1.5s 1.57 1.61 
1.57 1.67 1.81 
1.78 1.62 i.52 

The zero Curve in Fig.2 gives the distribution of t; on the closing characteristic of the 
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optimal continuous nozzle (‘F =: 2.4) that passes through the same point C; the axis of 

Fig. 2 

Fig. 3 

abscissas gives A$ = (q+ *‘I) / (i - q~), 
The difference in the distribution of i; on Id 

manifests itself in the shape of the initial section 

of the optimal nozzle. In Fig. 3 the distribution 

of 6 on the section ad of the compound nozzle 

corresponding to Curve 6 (Fig. 2) is given by the 

solid curve, and the distribution of 5 on the wall 

of the optimum continuous nozzle having the 

same final point is shown by the dashed curve. 
The optlmai compound nozzles were com- 

pared with ‘continuous nozzles having length S. 

and ootimal for the counterpressure p=:+ = np” + 
+ n’p+O. We recall that in the class of continuous 

nozzles such nozzles are optimal also for the prob- 

lem under consideration. Figure 4 shows one of 

the optimal compound contours and the contour 
of the corresponding continuous nozzk (dashed 
line). It is interesting to note that in all calcu- 

Fig. 4 

lated examples the section od of the compound nozzle turned out (as in the example 

of Fig. 4) to be close to the initial section of the continuous nozzle that is optimal for 
counterpressure pc+. 

To estimate the gain that the compound nozzle gives in the case when condition 

(2.10) is violated, the relative increase AX/X abe in the integral of the pressure force was 
calculated. Here b” is the end point of the continuous nozzle; &,” is the integral over 
the section ,aV’~o~ the contour of the continuous nozzle, analogous to the integrals in 
(1.3); and AX is the difference of X, and the corresponding value for the continuous 

nozzle. The values of AX / X,,. obtained in a series of examples, together with the para- 

meters X, n, P+ and @‘, and also some geometric properties are presented in Table I I 

X = 1.72 3.20 3.26 3.30 4.34 7.51 Table II 

;+ x 10% 
= 0.47 0.56 0.53 0.51 0.39 0.49 
~2.12 0.8’1 0.30 0.05 0.72 0.44 

p+’ x 10 ~2.66 t 1.76 1.72 1.70 1.03 0.75 
Yb Zi.45 1.69 1.96 2.00 1.99 2.80 
=d 

;pP 

~0.58 0.95 0.95 0.95 2.50 f.2 
= 1.11 1.22 1.22 1.22 1.53 
ei.27 1.55 1.55 1.55 t.69 1:99 

Ax / Xob’ eO.05 0.07 0.08 0.07 0.03 O.OG 
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6, The continuous contour, and the configuration shown in Fig. 1 and investigated in 
the preceding sections, do not exhaust the whole variety of possible shapes for an optimal 

compound nozzle. This follows from considerations of continuity and comparison of 

Fig. 1 with Fig. 5a, in which is shown the optimal configuration in the absence of a lim- 

itation on the length of the nozzle, that is, for X = 00. In this case the optimal com- 

pound nozzle is a combination of two nozzles, each of which provides a uniform stream 
at the exit. Thus the characteristics Id, de and bg are rectilinear, the gas parameters 
are constant in the triangle I& , so that 6 3 0 andp s p’O,and on bg the flow is also 
parallel to the z-axis and p z p+. 

c x 

Yh f d 

ec X 

Fig. 5 

We denote by X, the minimum value of X for which the optimal configuration 
shown in Fig. 5a is possible. This quantity is a function only of,p+ and pt” and is obtained 

if we take as ad and db the contour of minimal length that ensures the constancy of 
the gas parameters on the characteristics Id and bg. The latter, as is shown in Fig. 5a. 

have comers at points u and d. We construct the picture of the evolution of the shape 
of the optimum compound nozzle for increase of AX from zero to ji,. 

We fix the shape of the nozzle to the left of point a’and the values p+, p’” and IL. 
In accord with the condition (2.10) we may expect that the continuous contour achieves 

the maximum Xn for X < X,. Here Xl is the limiting value of ox’ for this case, cor- 
responding to the equality sign in the condition (2.10). and is a function of I)+, ]I+’ 
and n. As soon as X becomes greater than Xi, a final section .db appears in the opti- 
mal configuration, that is,a compound nozzle is realized of the type already investigated. 
It can be shown that if the equality is satisfied in (2.10). this ensures the satisfaction of 
the conditions 21 = U and 11 - 0 from (2.9) at zd = zb. Consequently, the length 

of the final section tends to zero for ‘y - .X1 + 0 ,although the comer at point d 
thereby remains finite. With the growth of X > X, (if pi, p+“ and* n are fixed), the 
initial as well as the final section grows in length. 

The type of compound nozzle shown in Fig.1 achieves the maximum xz for 
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x, ,( x sg x,, where Xris the second limiting value of X, which, like X1. is a func- 
tion of p+, p+“and IL Values X2 < X ( X,, where X, = X, (p+, p+‘, n) is a 
third limiting value, correspond to the situation in which point c (the point of intersec- 

tion of the closing characteristic bc with the axis of symmetry) lies between the last 
characteristic of the expansion fan arising from point a and the first characteristic of 

the analogous fan formed by flow past point d. This configuration was not considered 
above and therefore requires a more detailed analysis. 

Since now the boundary of the region of influence includes a segment of the axis of 

symmetry, where u E 0, a boundary condition is required also for ]ti. This condition 

is obtained just as the other boundary conditions were for the associated problem, and 
has the form pLr=O at y=O (5.1) 

Further, just as in p7, 181, it can be shown that the characteristic rc of the second 

family that joins point c with point r on the contour ad, and the characteristic of the 

first family passing through r are, just like Id, lines of discontinuity of the Lagrange 

multipliers. On each of these discontinuities one of the equalities (2.4) is satisfied, 
where the intensity of the jump in p1 on rc is determined by the relation 

[I.QJ = C(y”pp)‘/~ on rc (5.2) 
Here the constant C is the same as in equations (2. ‘I), and [pt], just as above, is the 
difference in the values of l.rl to the right and left of rc. 

It can be shown that the optimal contour adb in the case under consideration has an 

additional comer at point r , with the flow forming an expansion fan, and consequently 
the optimal configuration has the form shown in Fig. 5b. 

The presence of a comer at point r is proved just as in [17]. In an analogous way 
are obtained the conditions 

IV’ (p + p~)lt + T hdu - PSY"~ (PU)) = 0 
r- 

(5.3) 

These conditions determine the value of the discontinuity At, = (5, - 5_),. and the 

position of point c on the axis of symmetry within the expansion fan formed by the flow 

past point r. In (5.3) all quantities are found just as in the calculation of A and B in 

(2.6). 
The conditions of optimality of the segments (lr and rd, which in the present case 

replace the corresponding equalities in (2.11). are written in the form 

pn = u + C, on ar, 11~ = u + CI on rd (5.4) 

where (: n and C4 are constants. 

The integrals for ILi, analogous to those valid previously in the triangle o/d, now hold 
in the triangles ajr and tld. Here in a]r the first equality from (5.4) is used for the 
second integral, and in the triangle rtd the second one. The optimal distributions of 

5 = 5 (0) on the characteristics jr and Id satisfy the equality (2.12) with replace- 
ment of the constant C1 by C, and Cd respectively, 

The necessity of a comer at point r can be shown also by using the method that was 
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employed previously in [ 191 in investigating the flow past a body close to a wedge. 

Operating in analogous fashion let us assume that the optimal configuration is similar 

to that shown in Fig. 5b, but without a comer at point r. We vary this contour, leaving 
it unchanged outside the interval (Y, - AY) < Y < (vr + AY), where Ay is a small 
positive quantity. Inside this interval we replace the original contour (as shown in Fig 

SC) by two rectilinear segments that intersect the original contour on the boundaries 

of the interval, and each other at the point (xr -I- AGAy, yr), where AC is a positive 
quantity of the same order as ny. By linearizing the flow equations with respect to the 

original (nonuniform) stream, it can be shown that, with an accuraq of higher order than 
AcAy, the perturbations in P induced by the variation carried out on the contour vanish 

everywhere outside strips ofheight A y. adjacent to the characteristics rc and 6~. In- 

creases (decreases) in pressure correspond to “plus” (“minus*‘) signs in Fig, 5c. It can 

further be shown that the increment in Xc because of the changes in.p on the altered 
section of the contour is also a quantity of higher order of smallness than ~5~s~. Thus, 

if &, > 0; which holds in the general case, then there remains only an uncompensated 
increment in Xz of order AcAy, which appears at the expense of an increase of p in 

the vicinity of point 6. Consequently, in contradiction to the assumption made, the 
original smooth contour is nonoptimal 

There is an interesting mechanism of transition from the optimal configuration of 
Fig. 1 to the optimal configuration of Fig. 5b which, according to what is said above, 

takes place at X = X,. III the general case (for <,, # 0) this transition is realized 

not by means of “slipping down” of point h to the axis of symmetry along the closing 
characteristic of the first fan, but as a result of “splitting” of thatfan in two. The instant 
of “splitting” is determined by the position of point IL on the closing characteristic of 

the first fan such that if we introduce the section ar of zero extent, that is divide the 
fan in two, it is possible to obtain the case shown in Fig. 5b and simultaneously satisfy 

both conditions (5.3). The fulfillment of one of these conditions at the instant in ques- 
tion takes place at the expense of displacement of point /t along the closing character- 
istic, and the second condition thanks to the choice of the characteristic dividing the 

splitting fan. For &, # 0’ the constant C in (5.2) is also different from zero. This 
together with the relations (2.4) on lines of discontinuityandthe condition for pt from 

(2.5) make impossible the simultaneous satisfaction of the two conditions (5.3) for any 
other kind of transition. We note that the mechanism of “splitting” described above 
apparently plays an analogous role in the case of two-phase and nonequilibrium flows, 

where the contour of the optimal nozzle may also contain an internal comer point 

[17, 20-j. 
Increase of S from X2 to X s leads to growth in the lengths of the sections ar and d b 

and simultaneously to displacement of point r toward point d. For X = X, “conflu- 
ence” takes place of points r and d and of the corresponding fans. In the general case, 
for the same reason that “splitting” of the first fan occurs, the comer at point r is finite 
at the instant of “confluence”, and point c lies inside the fan. 

For ,Y R < x’ < X, the maximum xz is achieved by the configuration shown in 
Fig. 5d. In this case the condition (5.1) is fulfilled on the axis of symmetry, and the 
intensity of the discontinuity in &on the characteristic o!c is given by Eq. (5.2). In 
other respects the construction of the optimal contour is carried out here just as for the 
configuration shown in Fig. 1. For X -+ X, - 0 there occurs a natural transition to 
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the case of two nozzles with parallel discharge (Fig. 5a). If 0 < n .< 1, then “smooth- 
ing” of the streams at the exist of both nozzles apparently takes place such that 2/r > 0 
and yg > 0 f?r X < X, and yi = y, = 0 only for X = X,. In the latter.case 
(for X = X,) the solution of the associated problem is given by the equations 

l.~i = y’pu, ps = u - (1 - n) IQ - nug in alda 

(5.5) 
pL1 = yywn, p2 = n (u - ug) in bgldb 

In the case of combination of two nozzles with parallel discharge, given continuous 
distributionsof pi(for any n) ensure the fulfillment of all the equations and conditions 

of the variational problem (including A = R = 0). It is possible to convince oneself 
of this by direct substitution of (5.5) into the indicated equations and conditions. 

The authors are grateful to Iu. K. Gudkov for having drawn their attention to the prob- 

lem considered here, and do M, Ia. Ivanov for kindly providing programs for calculating 
the boost phase and solving the Goursat problem. 
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The problem is considered of unsymmetric steady flow past a circular cone in a 
uniform supersonic stream of viscous gas at high Reynolds number R. It was 

shown in Cl] that in many cases the solution of the problem of inviscid flow past 

a cone is such that normal derivatives of the density (and temperature) and of the 
velocity components of the gas tangent to the surface become infinite at the sur- 

face of the cone. In these cases, it follows from the condition of matching the 

solution for inviscid flow past the cone (which is regarded as the first term of an 
asymptotic expansion of the solution of the complete problem in powers of E = 
= R-‘/a outside the boundary layer) with the solution of the problem in the bound- 

ary layer that supplementary terms appear in the latter solution, which may give 
a significant correction to the results of the usual boundary-layer theory. It is 
shown (in the case of a laminar boundary layer) that these supplementary terms 
are self-similar; and a strict formulation is given of the problem for their deter- 
mination. 

1, We consider steady flow past a circular cone of semi-vertex angle p in a uniform 
supersonic stream of viscous gas at angle of attack a. In a system of coordinates in 


